top of page

Pumped to assist the heart with an artificial aorta

Scientists from EPFL and University of Bern have successfully implanted – in vivo – their first artificial tubular muscle that augments the aorta and assists cardiac function in pumping blood. Based on these results, the Werner Siemens Foundation has provided the green-light for granting an extra 8 million CHF over 8 years to develop artificial muscles for human disorders.

In January of this year, EPFL engineers announced in Advanced Science their concept of a novel cardiac assist device that is devoid of rigid metallic components. It consists of a soft, artificial muscle wrapped around the aorta that can constrict and dilate the vessel, ultimately enhancing the aorta’s natural function and aiding the heart to pump blood to the rest of the body.

Now, EPFL engineers led by Yves Perriard of the Laboratory of Integrated Actuators in collaboration with University of Bern, have successfully implanted their first artificial tubular muscle, in vivo, in a pig. During the 4-hour long operation, their cardiac assist device maintained 24 000 pulsations, of which 1500 were activated artificially by the augmented aorta.

The feat has unlocked a remaining 8 million CHFs out of 12 from the Werner Siemens Foundation to develop artificial muscles more generally.

“We’ve just achieved a world-first, proof-of-concept"

“We’ve just achieved a world-first, proof-of-concept by successfully implanting our cardiac device in a live pig,” explains Perriard. “We are thrilled to be able to pursue the next round of projects thanks to the support of the Werner Siemens Foundation.”

In late 2017, the engineers were promised a donation of 12 million CHF from the Werner Siemens Foundation to set up a Center for Artificial Muscles at EPFL, to be delivered based on scientific advances such as this latest proof-of-concept.

The extra funds will be used for the next phases of the project, which include development of artificial muscles to address other human disorders such as artificial sphincters in collaboration with University of Bern that could resolve urinary incontinence for example, or to restore control of facial expression together with the University of Zurich.

Next-generation cardiac technology

Current cardiac technology requires connecting the heart directly to a pump, which means invasive heart surgery. Moreover, traditional pumps use rigid mechanical systems involving a propeller to get the blood flowing, but that also destroy red blood cells, making it an unsustainable solution.

The novel cardiac device proposed by the EPFL engineers does not tamper directly with the heart, but with the aorta instead. The concept involves placing a dielectric elastomer actuator (DEA) – a polymer that transforms electric energy into mechanical work – around the aorta near the aortic valve. By applying an electric voltage across their device, the actuator artificially constricts and dilates the aorta, acting like a tubular muscle that imitates the natural function of the aorta.


bottom of page